Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Yong-Tao Wang,<sup>a</sup>\* Gui-Mei Tang<sup>a</sup> and Seik Weng Ng<sup>b</sup>

<sup>a</sup>Department of Chemical Engineering, Shandong Institute of Light Industry, Jinan, Shandong 250100, People's Republic of China, and <sup>b</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: ceswyt@sohu.com

#### **Key indicators**

Single-crystal X-ray study T = 295 KMean  $\sigma(\text{C}-\text{C}) = 0.007 \text{ Å}$  R factor = 0.076 wR factor = 0.215 Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Naphthalene-2,7-diol-1,2,4-triazole (2/1)

In the crystal structure of the title compound,  $2C_{10}H_8O_{2}$ .  $C_2H_3N_3$ , intermolecular N-H···O, O-H···N and O-H···O hydrogen bonds connect naphthalene-2,7-diol molecules and 1,2,4-tridazole molecules into a linear ribbon motif. Received 7 August 2006 Accepted 4 September 2006

## Comment

Aromatic alcohols are generally not sufficiently acidic to protonate bases; however, naphthalene-2,7-diol represents an exception as it affords some cocrystals with bases, as noted from the reported crystal structures of 10-methylisoalloxazinium bromide hydrate (Langhoff & Fritchie, 1970), cefadroxil heptahydrate (Kemperman *et al.*, 2000) and diaza-18crown-6 (Watson *et al.*, 1989). In the present study, a 2:1 cocrystal, (I), was obtained when naphthalene-2,7-diol was treated with an equimolar quantity of 1,2,4-triazole. We find it interesting that the title structure is not a 1:1 cocrystal as the reactants were mixed in an equimolar ratio, as was the case for two previously reported crystal structures (Wang & Tang, 2006; Wang, Tang & Wan, 2006).



In the crystal structure, a ribbon motif is formed *via* intermolecular  $N-H\cdots O$ ,  $O-H\cdots O$  and  $O-H\cdots N$  hydrogen bonds. In detail, the repeat unit of this extended ribbon consists of four  $O-H\cdots O$  hydrogen-bonded naphthalene-2,7diol molecules which are, in turn,  $O-H\cdots N$  and  $N-H\cdots O$ hydrogen bonded to two 1,2,4-triazole molecules. There are no hydrogen bonds between triazole molecules (Fig. 2 and Table 2).



**Figure 1** View of the asymmetric unit of (I), shown with displacement ellipsoids at the 50% probability level.

All rights reserved

© 2006 International Union of Crystallography

## Experimental

Naphthalene-2,7-diol (80 mg, 0.5 mmol) dissolved in methanol (5 ml) was treated with 1,2,4-triazole (35 mg, 0.5 mmol) dissolved in methanol (5 ml). After a few days, colorless bar-shaped crystals separated from the solution. Elemental analysis found: C 62.71, H 4.86, N 18.36%; calculated: C 62.87, H 4.84, N 18.33%.

Z = 4

 $D_x = 1.328 \text{ Mg m}^{-3}$ 

 $0.4 \times 0.3 \times 0.3$  mm

Mo  $K\alpha$  radiation  $\mu = 0.09 \text{ mm}^{-1}$ T = 295 (2) K

Bar, colorless

### Crystal data

| $2C_{10}H_8O_2 \cdot C_2H_3N_3$ |
|---------------------------------|
| $M_r = 389.40$                  |
| Monoclinic, $P2_1/c$            |
| $a = 20.754 (4) \text{\AA}$     |
| b = 5.890(1) Å                  |
| c = 16.273 (4)  Å               |
| $\beta = 101.682 \ (6)^{\circ}$ |
| $V = 1948.0(7) \text{ Å}^3$     |

#### Data collection

| Bruker SMART 1K area-detector | 3918 independent reflections           |
|-------------------------------|----------------------------------------|
| diffractometer                | 1489 reflections with $I > 2\sigma(I)$ |
| $\varphi$ and $\omega$ scans  | $R_{\rm int} = 0.090$                  |
| Absorption correction: none   | $\theta_{\rm max} = 26.3^{\circ}$      |
| 8911 measured reflections     |                                        |

#### Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_0^2) + (0.0838P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.076$ | where $P = (F_0^2 + 2F_c^2)/3$                             |
| $wR(F^2) = 0.215$               | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| S = 0.97                        | $\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 3918 reflections                | $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$ |
| 267 parameters                  | Extinction correction: SHELXL97                            |
| H-atom parameters constrained   | Extinction coefficient: 0.008 (2)                          |

## Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$          | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|---------------------------|------|-------------------------|--------------|---------------------------|
| O1−H1 <i>o</i> ···N1      | 0.85 | 1.93                    | 2.760 (6)    | 167                       |
| $O2-H2o\cdots O4^{i}$     | 0.85 | 2.02                    | 2.806 (5)    | 153                       |
| O3-H30···N2               | 0.85 | 2.12                    | 2.920 (5)    | 157                       |
| O4-H4o···O2 <sup>ii</sup> | 0.85 | 1.90                    | 2.743 (4)    | 172                       |
| $N3-H3n\cdots O3^{i}$     | 0.85 | 1.90                    | 2,750 (5)    | 176                       |

Symmetry codes: (i) -x + 1,  $y - \frac{1}{2}$ ,  $-z + \frac{3}{2}$ ; (ii) x - 1, y, z.



Figure 2 Part of the crystal structure of (I). Hydrogen bonds are shown as dashed lines.

The crystal did not diffract strongly and there are fewer reflections than normal which have  $I > 2\sigma(I)$ ; thismay lower the precision of the structure. H atoms were positioned geometrically (C-H = 0.93 Å, N-H = 0.85 Å and O-H = 0.85 Å), and were included in the refinement in the riding-model approximation, with  $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C,N,O})$ .

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Starting Fund of Shandong Institute of Light Industry (to YTW) and the University of Malaya.

## References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2001). *SMART* (Version 7.32A) and *SAINT* (Version 7.32A). Bruker AXS, Madison, Wisconsin, USA.
- Kemperman, G. J., de Gelder, R., Dommerholt, F. J., Raemakers-Franken, P. C., Klunder, A. J. H. & Zwanenburg, B. (2000). J. Chem. Soc. Perkin Trans 2, pp. 1425–1429.
- Langhoff, C. A. & Fritchie, C. J. (1970). J. Chem. Soc. D, pp. 20-21.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.

- Wang, Y.-T. & Tang, G.-M. (2006). Acta Cryst. E62, o3833-o3834.
- Wang, Y.-T., Tang, G.-M. & Wan, W.-Z. (2006). Acta Cryst. E62, 03396-03397.
- Watson, W. H., Nagl, A. & Eduok, E. (1989). Acta Cryst. C45, 303-306.